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Abstract

The use of artificial neural networks for object detection, along with advancements in 6G

and IoT research, plays an important role in applications such as drone-based monitoring of

structures, search and rescue operations, and deployment on hardware platforms like FPGAs.

However, a key challenge in implementing these networks on such hardware is the need to

economize computational resources. Despite substantial advances in computational capacity,

implementing devices with ample resources remains challenging. As a solution, techniques for

partitioning and compressing neural networks, as well as compressing activation signals (or fea-

ture maps), have been developed. This work proposes a system that partitions neural network

models for object detection in videos, allocating part of the network to an end device and the

remainder to a cloud server. The system also compresses the feature maps generated by the last

layers on the end device by exploiting temporal correlation, enabling a predictive compression

scheme. This approach allows neural networks to be embedded in low-power devices while

respecting the computational limits of the device, the transmission rate constraints of the com-

munication channel between the device and server, and the network’s accuracy requirements.

Experiments conducted on pre-trained neural network models show that the proposed system

can significantly reduce the amount of data to be stored or transmitted by leveraging temporal

correlation, facilitating the deployment of these networks on devices with limited computational

power.

Keywords — Compression, DNN, activation signals, temporal correlation, prediction



Resumo

O uso de redes neurais artificiais para detecção de objetos, juntamente com avanços na

pesquisa de 6G e IoT, desempenha um papel importante em aplicações como monitoramento de

estruturas por drones, operações de busca e resgate, e implantação em plataformas de hardware

como FPGAs. No entanto, um desafio fundamental na implementação dessas redes em tais

hardwares é a necessidade de economizar recursos computacionais. Apesar dos avanços subs-

tanciais na capacidade computacional, implementar dispositivos com recursos amplos continua

sendo um desafio. Como solução, técnicas de particionamento e compressão de redes neurais,

bem como compressão de sinais de ativação (ou feature maps), foram desenvolvidas. Este tra-

balho propõe um sistema que particiona modelos de redes neurais para detecção de objetos em

vídeos, alocando parte da rede em um end device e o restante em um servidor na nuvem. O

sistema também comprime os mapas de características gerados pelas últimas camadas no dis-

positivo final, explorando a correlação temporal, o que possibilita um esquema de compressão

preditiva. Essa abordagem permite que redes neurais sejam incorporadas em dispositivos de

baixo consumo de energia, respeitando os limites computacionais do dispositivo, as restrições

de taxa de transmissão do canal de comunicação entre o dispositivo e o servidor, e os requisi-

tos de precisão da rede. Experimentos conduzidos em modelos de redes neurais pré-treinadas

mostram que o sistema proposto pode reduzir significativamente a quantidade de dados a se-

rem armazenados ou transmitidos ao explorar a correlação temporal, facilitando a implantação

dessas redes em dispositivos com poder computacional limitado.

Palavras-chave — Compressão, DNN, sinais de ativação, correlação temporal, predição



Chapter 1

Introduction

The emergence of Deep Neural Networks (DNN) has significantly advanced research in

various fields, including computer vision, speech recognition, audio recognition, and natural

language processing. The rapid growth and apparent superiority of deep learning over tradi-

tional machine learning methods, combined with the evolution of computational resources, have

enabled the widespread use of these networks in numerous applications. Examples include ob-

ject detection, Big Data processing, and the continuous evolution of Artificial Intelligence (AI).

This progress has opened doors for increasingly complex, precise, and efficient solutions across

industries, driving innovation and enabling more sophisticated technologies in automation, pre-

dictive analysis, and human-machine interaction [1].

The growing demand for advanced services, coupled with the rapid increase in Internet

of Things (IoT) devices and other connected technologies, necessitates that modern wireless

communication systems expand to meet user expectations for quality of service, throughput, la-

tency, connectivity, and security. Emerging standards like 5G, 6G, and beyond (xG) are poised

to introduce transformative changes to wireless communication networks, enabling a fully con-

nected environment that supports ubiquitous connectivity across a vast array of IoT devices.

These advancements will facilitate seamless, reliable connections for billions of interconnected

devices, driving a hyper-connected world where IoT can unlock new levels of automation, real-

time monitoring, and data-driven decision-making across industries [2].

Thus, the use of DNNs, alongside advancements in wireless communication and IoT re-

search, enables exploration of a wide range of use cases, along with their implications and

challenges. The application of artificial neural networks for object detection plays a crucial

role in emerging use-case scenarios, particularly in contexts such as drones. These networks
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can be utilized in drones for search and rescue missions, structural monitoring, and agricultural

applications, demonstrating their potential in fields that benefit from real-time data analysis,

automation, and enhanced situational awareness [3].

However, a key challenge in implementing these networks on resource-constrained hard-

ware is the need to economize computational resources. Despite substantial advances in compu-

tational capacity, deploying devices with ample resources remains challenging. To address this,

techniques for partitioning and compressing neural networks have been developed [4] [5] [6],

aiming to optimize DNN deployment on limited-resource hardware. These methods often em-

ploy compression techniques such as quantization and pruning, which reduce computational

demands while maintaining model accuracy.

Most existing studies in the literature focus on compressing activation signals (also known

as feature maps), which are the outputs of convolutional layers after the activation function, to

achieve a compressed model. However, these studies primarily explore spatial redundancy in

feature maps, as they are typically applied to image classification or object detection tasks in

images [7] [8].

This work proposes a system that partitions neural network models for object detection

in videos, allocating part of the network to an end device and the remainder to a cloud server.

The system also compresses the feature maps generated by the last layers on the end device by

exploiting temporal correlation, enabling a predictive compression scheme. This approach al-

lows neural networks to be embedded in low-power devices while respecting the computational

limits of the device, the transmission rate constraints of the communication channel between

the device and server, and the network’s accuracy requirements.

The remainder of this manuscript is structured as follows: Chapter 2 introduces the fun-

damental concepts used throughout this work, discussing the general architecture of the convo-

lutional neural network models and their functionality, as well as the main compression tech-

niques used to explore spatial and temporal correlation. Chapter 3 details the proposed method

and the techniques used in its development. Chapter 4 describes the specific architecture of the

network models utilized, provides an overview of the datasets, analyzes the spatial and tempo-

ral correlations in feature maps, and presents the experiments conducted along with the results

obtained. Finally, Chapter 5 presents a summary of the results present in this work and provides

directions for future work.
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1.1 Contributions

The contributions of this work are:

• Analyzing the existence of temporal correlation in feature maps across all layers of the

network model when using video inputs. To the best of the author’s knowledge, this is

the first time in the literature that temporal correlation is used to compress feature maps.

• Implementing quantized network models for object detection using the PyTorch Quan-

tization API, addressing the gap in existing codes and documentations, which currently

supports quantization primarily for simple classification models, making it difficult to

apply to more complex models.

• Proposing a novel compression scheme that predicts feature maps by leveraging temporal

correlation.

• Enabling the implementation of a security layer for the information extracted from the

layers deployed on the edge device, where instead of sending raw data, the compressed

feature maps are transmitted over the network. This compression inherently adds a level

of security, acting as a layer of cryptography for the data.



Chapter 2

Theoretical Foundations

2.1 Convolutional Neural Networks

DNN are computational processing systems inspired by the way biological nervous sys-

tems, such as the human brain, operate. They consist of a large number of interconnected

computational nodes, known as neurons, that work together in a distributed manner to learn

from input data and optimize their final output [1] [9].

The basic structure of a DNN can be modeled as shown in Figure 2.1. Initially, the input,

typically a multidimensional data structure, is loaded into the input layer, which distributes it

to the hidden layers. The hidden layers make decisions based on the outputs of previous layers

and evaluate how stochastic changes affect the final outcome, thereby performing the learning

process [10].

Input Layer

Output Layer

Hidden
Layers

Figure 2.1: Generic architecture of a fully-connected DNN.

Convolutional Neural Networks (CNN) are a multi-layer deep learning architecture specif-

ically designed to handle two-dimensional input data. Each layer of the network consists of
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multiple two-dimensional planes, with each plane composed of several independent neurons.

From the raw image vectors at the input to the final output, the entire network expresses a single

perceptual scoring function, known as the weight [11].

CNNs are primarily used in pattern recognition applications involving images. They al-

low specific image features to be encoded into the architecture, making the network more suit-

able for image-focused tasks while reducing the number of parameters needed to configure the

model.

A CNN is capable of successfully capturing the spatial and temporal dependencies in an

image through the application of relevant filters. This architecture presents a better fit for image

datasets by reducing the number of parameters and reusing weights, allowing the network to

better understand the complexity of the image

One of the key differences in CNN architecture is the organization of neurons in three

dimensions within the layers: the spatial dimensions of the input (height and width) and the

depth. The role of a CNN is to reduce images to a format that is easier to process, without losing

critical features necessary for accurate prediction, while ensuring the architecture is scalable to

large datasets.

CNNs are composed of three types of layers: convolutional layers, pooling layers, and

fully connected (dense) layers. When stacked, these layers form the architecture of a CNN.

Figure 2.2 illustrates a simplified CNN architecture for classifying images from the MNIST

(Modified National Institute of Standards and Technology) dataset.

Input

Convolutional
Pooling

Fully
Connected

Output

4

Figure 2.2: Simplified architecture of a CNN.

The basic functionality of the above example can be divided into five main areas:

1. The input layer receives the data to be processed by the rest of the network. For image

applications, this typically involves storing the pixel values of the input image.
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2. The convolutional layers, aided by activation functions like ReLU, are responsible for

extracting features from the input images. These features may include simple patterns

such as edges and textures in the initial layers, progressing to more complex patterns and

object parts in deeper layers.

3. Pooling layers reduce the spatial dimensions (height and width) of the feature maps pro-

duced by the convolutional layers. This reduces computational complexity and the risk

of overfitting, focusing on essential information (e.g., the presence of certain features).

4. After several convolutional and pooling layers, the high-dimensional feature maps are

flattened into a one-dimensional vector. This vector is then passed to the fully connected

layers, which act as classifiers using the features extracted and reduced by the earlier

layers.

5. The final fully connected layer, typically using a softmax activation function, produces

a probability distribution over the classes. In the case of the MNIST dataset, this means

predicting the probability of each of the ten digits (0 through 9) based on the input image.

Using this method of transformation, CNNs are able to process the original input layer by

layer through convolutional techniques and downsampling, ultimately producing class scores

for classification and regression tasks. Next, we will present the individual layers in detail,

along with their hyperparameters and connectivity.

2.1.1 Convolutional Layer

Convolutional layers play a crucial role in the functionality of CNNs. The parameters

of these layers focus on the use of programmable kernels, which learn during training. These

kernels are typically small in spatial dimensions but span the entire depth of the input. When

data reaches a convolutional layer, each filter is convolved across the spatial dimensions of the

input (i.e., the two-dimensional matrix of height and width) to produce a 2D activation map [12].

As the network performs convolutions over the input, the dot product is computed for

each value in the kernel, as illustrated in Figure 2.3. The network learns kernels that activate

when detecting specific features, commonly referred to as activations. Each kernel generates a

corresponding feature (activation) map, which is stacked along the depth dimension to form the

complete output volume of the convolutional layer [13].
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Input
Kernels Feature Maps

. =
Dot Product

Figure 2.3: Simplified architecture of a convolutional layer.

Figure 2.4 illustrates a numerical example of how the convolution process in a convolu-

tional layer operates. The two-dimensional input matrix (represented by the green matrix) is

traversed in segments (represented by the orange matrices), with the step value defined by a

hyperparameter called stride (which will be explained in more detail later). Each orange matrix

is then combined with the kernel (represented by the yellow matrices) through the dot product,

generating an activation map (represented by the red matrices). Throughout the training pro-

cess, the network learns various kernels that produce multiple activation maps, which are then

stacked to form the output of the convolutional layer.
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Figure 2.4: Convolution process of a convolutional layer with 3× 3 kernel and stride 1.

As mentioned earlier, CNNs facilitate the creation of simpler models that scale better to

large datasets. This is because each neuron in a convolutional layer is connected to only a small
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region of the input volume, known as the receptive field. The dimensionality of this region is

referred to as the size of the neuron’s receptive field. For example, if we consider the input to

the network as an image of size 64× 64× 3 (an RGB image with a dimensionality of 64× 64)

and define the receptive field size as 6 × 6, each neuron in the convolutional layer will have a

total of 108 weights (calculated as 6× 6× 3, where 3 represents the depth of the input).

Convolutional layers can also significantly reduce model complexity by optimizing their

output through three hyperparameters: depth, stride, and zero-padding. The depth of the output

volume produced by convolutional layers can be defined by the number of neurons (or kernels)

within the layer for a given region of the input. Reducing this hyperparameter can minimize the

total number of neurons in the network but may also significantly decrease the model’s pattern

recognition capability.

Additionally, we can define the stride, which configures how the receptive fields position

themselves around the spatial dimensions of the input. For instance, if we set the stride to 1,

the receptive fields will overlap heavily, producing large activations. Conversely, increasing the

stride reduces overlap and produces an output with lower spatial dimensions. Using the same

input matrix from the example in Figure 2.4, we can set the stride to 2, as shown in Figure 2.5,

thereby reducing the amount of overlap.

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 1 1
0 1 1
0 0 1

Input

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 0 0
1 1 0
1 1 1

Input

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

0 0 1
0 0 1
0 1 1

Input

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 1 1
1 1 0
1 0 0

Input

Figure 2.5: Matrix with stride set to 2.

Zero-padding is the process of adding zeros to the edges of the input, providing addi-

tional control over the dimensionality of the output volumes. This technique is exemplified in

Figure 2.6, where padding is applied to the edges with zero values to preserve the dimensions

of the input matrix.
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Figure 2.6: Process of edge filling the output of a convolutional layer.

2.1.2 Pooling Layer

Pooling layers aim to gradually reduce the dimensionality of the representation, thereby

decreasing the number of parameters and the computational complexity of the model [14]. The

pooling layer operates on each activation map and determines its dimension using two common

methods: max-pooling and average pooling. Max-pooling layers perform an operation that

selects the maximum element from the region of the activation map covered by the filter, helping

to extract low-level features from the data, such as edges and points. An example of a max-

pooling layer is illustrated in Figure 2.7.

3 1
2 5

1 3
0 2

1 4
4 7

2 1
2 4

Max = 5 3
7 4

Figure 2.7: Max-pooling layer operation.

Average pooling layers operate by calculating the average of the elements in the activa-

tion map covered by the filter, as illustrated in Figure 2.8. In most CNNs, pooling layers use

2 × 2 filters applied with a stride value of 2 across the spatial dimensions of the input. This

configuration reduces the activation map to 25% of its original size while maintaining the depth

volume at its standard size.

Due to the destructive nature of pooling layers, two primary configurations are commonly

observed. Typically, the stride and filter sizes are set to 2 and 2 × 2, respectively, allowing the

layer to cover the entire spatial dimension of the input. Alternatively, overlapping pooling can

be applied, where the stride remains 2, but the kernel size is increased to 3× 3. For kernel sizes

larger than 3× 3, a significant decrease in model performance is generally observed.
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Figure 2.8: Average pooling layer operation.

2.1.3 Fully Connected Layer

Fully connected layers, also known as dense layers, form the final part of the convolu-

tional network and are responsible for learning the weights acquired in the convolutional layers,

functioning similarly to the neurons in traditional DNNs. The activation matrices generated by

the convolutional layers are reorganized into a one-dimensional vector through an intermediate

layer called the flattening layer. The output of this flattening layer is then connected to every

neuron in the first fully connected layer. Figure 10 illustrates how the convolutional and pooling

layers connect to the fully connected layers.

Input
Convolutional

Pooling

Fully
Connected

Output

Flattening

Feature Extraction Classification

Figure 2.9: Connection between the output of the convolutional layers and the fully connected layers.

Since fully connected layers are densely connected, the majority of the network’s pa-

rameters are concentrated in these layers. For example, consider two fully connected layers

with approximately 4096 neurons each—the connection between these layers would require

over 16 million weights. It is important to note that the structure of a fully connected layer

is application-specific; for instance, a fully connected layer in a classification model functions

differently from one in a segmentation model.
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2.1.4 Activation Functions

Activation Functions (AF) in neural networks calculate the weighted sum of inputs and

bias to determine whether a neuron should activate or not. AFs manipulate input data through a

gradient-based process and generate an output for subsequent layers in the network. They can

be either linear or nonlinear, playing a crucial role in controlling the outputs of the layers and

enhancing the model’s expressive capacity. This allows the network to better capture complex

patterns, contributing to its ability to embody artificial intelligence [15].

Figure 2.10: Single-layer perceptron without activation function.

In a single-layer perceptron, binary classification can be easily performed, as illustrated

in Figure 2.10, where the model output y1 is defined by:

y1 = w1 × x1 + w2 × x2 + b. (2.1)

( )

Figure 2.11: Single-layer perceptron with activation function.
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However, because the core of the classifier is a linear equation, it cannot solve classifi-

cation problems in nonlinear systems. To address this limitation, an AF is introduced into the

perceptron, as shown in Figure 2.11. With this addition, the model output is defined as:

y = σ(w1 × x1 + w2 × x2 + b). (2.2)

2.1.4.1 Sigmoid Function

The sigmoid function, also known as the logistic or squashing function, is a nonlinear

function with a bounded output that was widely used as an activation function during the early

years of deep learning research.

Figure 2.12: Sigmoid Activation Function Curve.

From the sigmoid function curve shown in Figure 2.12, we observe that the function

exhibits a smooth saturability characteristic. Specifically, the slope of the graph approaches zero

when the input is either very large or very small. When the slope is near zero, the gradient passed

through the network diminishes, making it difficult to effectively train the network’s parameters.

Furthermore, the function’s always-positive output limits the weight update direction to only

one direction, which can slow the model’s convergence rate. The sigmoid function is defined

as:

y1 =
1

1 + e−x
. (2.3)

2.1.4.2 Hyperbolic Tangent Function

The hyperbolic tangent function, commonly known as the tanh function, is an improved

version of the sigmoid function, featuring symmetry and being centered at 0, as shown in Fig-



13

ure 2.13. The tanh function provides better training performance for multilayer neural networks

compared to the sigmoid function. Its zero-centered output aids in the backpropagation process,

making it more effective. The tanh function is defined as:

y1 =
1− e−2x

1 + e−2x
. (2.4)

Figure 2.13: Hyperbolic Tangent Activation Function Curve.

2.1.4.3 ReLU Function

The Rectified Linear Unit (ReLU) function has become the most widely used activation

function in deep learning applications. It offers faster learning and provides better performance

and generalization compared to sigmoid and tanh functions. The ReLU function is nearly linear,

preserving the linear properties of models and facilitating their optimization. Specifically, the

ReLU activation function outputs 0 for any input values less than or equal to 0, as illustrated in

Figure 2.14.

The ReLU activation function can be defined as:

y1 =

0; para x ≤ 0

x; parax > 0.

(2.5)

The main advantages of using the ReLU function are the reduction in computational cost,

as it eliminates the need for exponential and division operations, and the introduction of sparsity

in the data by setting negative values to zero.
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Figure 2.14: ReLU Activation Function Curve.

2.1.4.4 Softmax Function

The softmax function is another commonly used activation function in neural networks,

particularly in the final layer of fully connected networks for classification tasks. It is designed

to compute a probability distribution from a vector of real numbers, producing output values

between 0 and 1, with the sum of the probabilities equal to 1. This makes it well-suited for

multi-class classification problems, as the output can be interpreted as the probability of each

class. The softmax function for a vector of K elements can be defined as:

f(xi) =
exi∑K
j=1 e

xj

for i = 1,...,K and x = (x1,...,xK). (2.6)

2.2 Quantization

Quantization is a process of mapping a large set of values to a smaller set, which is

inherently irreversible and lossy. Unlike sampling, quantization cannot fully reconstruct the

original signal because the process discards certain information. However, the degradation

caused by quantization can be relatively small and acceptable for certain applications, such as

video and image compression in remote monitoring systems [16].

The main reasons for using quantization are: 1) Transmitting a digital signal with infinite

amplitude values would require an extremely high transmission rate, which is impractical; 2)

Human perception, in terms of vision and hearing, cannot easily distinguish between continuous

signals with infinite amplitude levels and discrete signals with finite levels. This limitation

allows for effective compression of audio and video signals, as our senses detect only finite
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intensity differences.

Quantization is, therefore, a crucial part of compression algorithms for both audio and

video data. There are two primary methods of quantization: scalar quantization, where individ-

ual samples are quantized one by one, mapping each input scalar value to an output scalar value

and vector quantization, where samples are processed in blocks, allowing the quantization of a

group of values simultaneously.

0 1 2 3 4-1-2-3-4

1

2

3

4

-2

-3

-4

-1

Input

Output

Figure 2.15: Relationship between input and output of an uniform quantizer.

Scalar Quantization (SQ) is a memoryless and instantaneous process, meaning the quan-

tization of each sample is independent of other samples. It can be classified into two types:

uniform and non-uniform quantization. The most common type is the uniform quantizer, which

functions as a straightforward rounding mechanism. In this method, each sample is mapped to

the nearest value from a finite set of quantization levels [17].

To better explain the uniform quantization process, assume that the amplitude of the input

signal to the quantizer ranges between a maximum value V > 0 and a minimum value −V .

Any amplitude of the non-quantized signal below −V or above V is discarded. The range

[−V, V ] defines the operational limit of the quantizer, and the error introduced by discarding

values outside this range is known as overload distortion. Figure 2.15 illustrates the relationship

between the input and output of an uniform quantizer.
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The amplitude range [−V, V ] is divided into L quantization levels, each spaced apart by

a value ∆, known as the step size. In a uniform quantizer, the step size is fixed across all

quantization levels. For L quantization levels, the step size for a signal with amplitude 2V is

given by:

∆ =
2V

L
. (2.7)

Within the amplitude range supported by the quantizer, the spacing between the continu-

ous value and the discrete value is referred to as granularity, while the error introduced by this

spacing is known as quantization noise or granular distortion. Both quantization error and over-

load distortion are inherent functions of the quantization process, and depend on the statistics

of the input signal. It is important to balance these two sources of error.

Each quantization level at the output of the quantizer is mapped to a codeword of R bits,

representing the quantized sample value. The number of quantization levels is expressed as:

L = 2R =
2V

∆
. (2.8)

For a uniform quantizer, the quantization error e is a random variable bounded by −∆
2
≤

e ≤ ∆
2

. When the step size ∆ is sufficiently small, the quantization error can be considered

uniformly distributed and uncorrelated with the input. Using Equation 2.8 and noting that the

quantization error has a mean of 0, its variance (which equals the Mean Squared Error (MSE))

is given by:

σ2
e =

∫ ∆
2

−∆
2

(
1

∆
)e2de =

∆2

12
=

V 2

3L2
=

V 2

3(22R)
. (2.9)

From this, we can observe that, considering the behavior of the uniform quantizer, as the

number of quantization levels L → ∞, or the step size ∆ → 0, or the number of bits per

quantized sample R → ∞, the quantization error e → 0.

The loading factor of a random input signal, with a mean of 0 and a standard deviation of

σg, and a peak value of V , is defined by α = V
σg

. Noting that the signal has a mean of 0, the

average power of the input signal is then defined as P = σ2
g .

Thus, the Signal-to-Noise Ratio (SNR) at the output of a uniform quantizer with negligible

saturation distortion is given by:

SNR =
P

σ2
e

= (
σ2
g

V 2
)22R = (

3

α2
)22R , (2.10)

where it can be observed that the SNR increases exponentially as the number of bits per sample

R increases. The SNR can be expressed in dB through the equation:

SNR = 6R− 20logα+ 4.77 = 6R− 7.27 (dB), (2.11)
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where for each additional bit, an increase of 6 dB can be achieved for the SNR. Note that in

the second equation, the value of α has been replaced with 4, which corresponds to a common

choice for the loading factor.
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Figure 2.16: Relationship between input and output of a non-uniform quantizer.

The optimal quantization level in each quantization region should be chosen as the cen-

troid (conditional expected value) of that region. However, since an ideal quantizer requires

advanced knowledge of the signal’s statistics and variations in power level, it has limited prac-

tical applications. In contrast, a uniform quantizer yields a higher (optimal) output SNR when

the signal amplitude follows a uniform distribution over the dynamic range [−V, V ].

For sources with non-uniform distributions, an efficient approach is to employ a non-

uniform quantizer that utilizes a variable step size. For instance, when dealing with an input

that follows a Gaussian distribution with a mean of zero, one can design a quantizer with smaller

spacings near zero and larger spacings at the extremes, as illustrated in Figure 2.16.

There are two main advantages to using a non-uniform spacing of quantization levels: 1)

it is possible to significantly increase the dynamic range that can be accommodated for a given

number of bits per sample; 2) it is possible to design quantizers tailored to the statistics of the

input signal, thereby considerably increasing the SNR.

A general model for any non-uniform quantizer with a finite number of levels is shown
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in Figure 2.17. The input x is first transformed through a non-linear compressor, which acts as

a variable gain amplifier, attenuating large amplitudes and amplifying small amplitudes. The

output y = G(x) is then quantized with an uniform quantizer, producing an output ŷ, which

is then transformed through a non-linear expander, in order to restore the signal samples to

their original levels, thus generating an output signal x̂ = G−1(ŷ). The combination of the

compressor and the expander is referred to as a compander [17].

Uniform
QuantizerCompressor Expansor

Figure 2.17: General model for a non-uniform quantizer.

2.3 Motion Estimation

Video compression is essential in multimedia technologies, as it allows for efficient stor-

age and transmission of video content. Since video files are often large due to their detailed

data, compressing them without significantly sacrificing quality is critical for streaming, broad-

casting, and reducing storage requirements [18] [19].

The primary goal of video compression is to minimize file size by eliminating redun-

dancies both within a single frame (intra-frame compression) and between consecutive frames

(inter-frame compression). Two key types of redundancies are targeted by compression algo-

rithms:

1. Spatial Redundancy: This refers to the redundancy within a single frame, where neigh-

boring pixels often have similar color or intensity values. Compression techniques like

JPEG exploit this redundancy by transforming the pixel data into a more compact form.

2. Temporal Redundancy: This refers to the redundancy between consecutive frames. For

example, in many videos, much of the scene remains static from one frame to the next.

Inter-frame compression techniques like motion estimation and motion compensation

take advantage of this redundancy by identifying the motion of objects and predicting

frames based on previous or future frames.
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Motion estimation, in particular, plays a vital role in reducing temporal redundancy. In-

stead of transmitting entire frames, the encoder sends a Motion Vector (MV) that describes how

blocks of pixels have moved between frames. This approach is fundamental to modern video

codecs such as H.264, HEVC, and VP9. By accurately estimating and compensating for motion,

these codecs achieve high compression ratios while maintaining excellent video quality [20].

2.3.1 Block Matching Algorithms

The Block Matching Algorithm (BMA) is a widely used technique for motion estimation.

In this approach, the current frame is divided into non-overlapping MacroBlocks (MBs) of size

N ×M . Each macroblock in the current frame is compared with a corresponding macroblock

and its neighboring blocks in the reference frame. This process identifies displacement vectors

that indicate how the macroblocks move from one position to another between frames [21].

For each macroblock in the current frame, the BMA searches for the best matching mac-

roblock of the same size (N × M ) within a defined search area in the reference frame. The

position of this matching macroblock determines the MV for the current macroblock, as shown

in Figure 2.18. This MV has two components: horizontal and vertical, which can be either pos-

itive or negative. A positive value indicates motion to the right or downward, while a negative

value indicates motion to the left or upward.

Current macroblock

Best match

p

Search area

Reference frame Current frame

Figure 2.18: General block matching motion estimation.

These MVs are then used to generate the Motion-Compensated Prediction (MCP) for

the current frame, using block motion compensation. The MVs are encoded through entropy



20

coding, and the Residual Prediction Error (RPE) between the current frame and the MCP is

encoded using a combination of transform coding, quantization, and entropy coding.

At the decoder side, the MVs and RPE are decoded and used to reconstruct the MCP from

the reference frame. The decoded RPE is then applied to the reconstructed MCP to recover the

current frame.

The search area for finding a matching macroblock is typically limited to a region ex-

tending up to p pixels on all four sides of the corresponding macroblock in the reference frame,

where p is the search parameter. Larger motions require a higher p value, increasing the com-

putational demand.

The quality of the match is measured using a Block Distortion Measure (BDM), such as

Mean Absolute Difference (MAD), Sum of Absolute Differences (SAD), or MSE. The mac-

roblock that produces the lowest distortion cost is considered the best match for the current

macroblock [22].

For a current macroblock C of size N ×N and a candidate macroblock R in the reference

frame, displaced by (vx, vy) the MAD, SAD, and MSE are calculated as follows:

MAD =
1

N ×N

N∑
i=1

N∑
j=1

|C(i, j)−R(i+ vx, j + vy)| , (2.12)

SAD =
N∑
i=1

N∑
j=1

|C(i, j)−R(i+ vx, j + vy)| , (2.13)

MSE =
1

N ×N

N∑
i=1

N∑
j=1

(C(i, j)−R(i+ vx, j + vy))
2 . (2.14)

The simplest algorithm for motion estimation, known as Full Search (FS) or Exhaustive

Search (ES), performs an exhaustive search for the best matching block within the defined

search area. This involves moving the correlation window to every possible candidate position

within the search area. As a result, FS identifies the most accurate match and achieves the

highest Peak Signal-to-Noise Ratio (PSNR) compared to any other block matching algorithm.

However, this approach comes with significant computational complexity.

To reduce and optimize this complexity, various fast block matching algorithms have

been developed. If an algorithm can reduce computational effort while maintaining the same

quality as FS, it is referred to as a lossless block matching algorithm. On the other hand, if

the algorithm sacrifices some quality to improve speed, it is considered a lossy block matching

algorithm [23] [24].
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2.3.1.1 Three Step Search Block Matching Algorithm

The Three Step Search (TSS) Block Matching Algorithm is one of the most popular mo-

tion estimation algorithms used in video compression. It balances computational efficiency and

accuracy, making it suitable for real-time applications like video streaming and conferencing.

The TSS algorithm finds the best match for a block in the reference frame through a hier-

archical approach that progressively narrows down the search window [22]. The TSS algorithm

divides the search process into three distinct steps:

• Step 1: Initial Search Window

– Set Search Parameters: Assume the maximum displacement or search range is p.

This defines how far the algorithm will search for a matching block. A typical value

of p is 7 or 15.

– Starting Point: The algorithm starts at the center of the search window in the refer-

ence frame (typically at the same position as the current block).

– Initial Step Size: he initial step size is half the search range, following the equation

(p+ 1)/2.

– Search 8 Neighbors: The algorithm evaluates the match at 8 points around the center,

spaced by the step size in a diamond pattern.

– Select the Best Match: The matching quality is evaluated for each of the 9 points

(the 8 neighbors plus the center), usually using the SAD. The block with the lowest

SAD is chosen as the new center for the next step.

• Step 2: Reduce Step Size

– Halve the Step Size: The step size is reduced by half, from (p+ 1)/2 to (p+ 1)/4.

– Search 8 Neighbors Again: The algorithm now searches around the new center in a

similar diamond pattern with the smaller step size.

– Select the Best Match: Again, the block with the lowest SAD from the 9 points

becomes the new center for the final step.

• Step 3: Final Search

– Further Reduce Step Size: The step size is reduced again to (p+ 1)/8.
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– Search the 8 Neighbors: A final search is conducted around the new center.

– Select the Final Match: The block with the lowest SAD is selected as the best match

for the current block, and its corresponding displacement from the original position

is the motion vector.

The general idea is shown in Figure 2.19, where the green points represent the first step,

the blue points represent the second step, and the red points represent the final step. For a search

range of p = 7, the full search method requires 225 points, while the three-step search method

only needs 9+ 8+ 8 = 25 points. Due to its simplicity and reasonable performance, the TSS is

widely used for research purposes [25].

Figure 2.19: Example path for convergence of TSS.

2.4 Huffman Coding

Huffman coding is an entropy-based algorithm used for lossless data compression, where

a variable-length code table is employed to encode input symbols. This table is derived from the

estimated probability of occurrence of each symbol, with more likely symbols assigned shorter

codewords, and less likely symbols assigned longer codewords. Today, Huffman coding is often

used as a back-end for other compression techniques [26] [27].

In image compression, pixels are treated as symbols. Frequently occurring symbols are

assigned fewer bits, while less frequent symbols are assigned more bits. The main steps in
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Huffman coding are: 1) Construct a Huffman tree based on the input data; 2)Assign codes to

symbols by traversing the Huffman tree. The process for constructing a Huffman tree is as

follows:

1. Begin by creating a leaf node for each symbol and assigning it a priority based on its

probability of occurrence.

2. Arrange the nodes in decreasing order of priority.

3. Choose the two nodes with the lowest priority (i.e., the lowest occurrence frequency).

4. Generate a new intermediate node, assigning it a priority equal to the sum of the priorities

of the two selected nodes.

5. Repeat steps 3 and 4 until all nodes merge into a single tree.

Symbol 000 001 010 011 100 101 110 111

Probability 0.1 0.06 0.4 0.05 0 0.09 0.2 0.1

Table 2.1: Probability of occurrence of symbols.

For example, consider a set of pixels with the probability of occurrence for each symbol,

as outlined in Table 2.1. The process of constructing the Huffman tree is illustrated in Fig-

ure 2.20. Once the tree is built, codes are assigned to each input symbol by traversing the tree

from the root node (at the top) to each leaf node. At each step, assign a "0" to left branches and

a "1" to right branches, as shown in Figure 2.21. The resulting codeword for each symbol and

the average length after encoding are summarized in Table 2.2.
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Figure 2.20: Huffman tree construction process.
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Figure 2.21: Final Huffman Coding Model.

Decoding is a straightforward process that only requires the receiver to have knowledge

of the Huffman tree. The decoding begins by reading the encoded data and following the tree:

a "0" directs the traversal to the left branch, and a "1" directs it to the right branch. Whenever a
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leaf node is reached, the corresponding symbol stored in that leaf node is read and decoded.

Symbol 000 001 010 011 100 101 110 111

Codeword 1010 1110 0 1111 1011 100 110

Medium

length
2.5

Table 2.2: Output codeword for each symbol.

2.5 Run-Length Encoding

Run-Length Encoding (RLE) is a lossless compression technique that is especially effec-

tive for data with repeated values. It works by replacing consecutive occurrences of a symbol

with the count of its occurrences followed by the symbol itself [28]. RLE can be applied to

various types of data, but its compression efficiency depends heavily on the data content. If the

data lacks significant repetitions, RLE may actually increase the file size rather than reduce it.

0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 101 1

0 2 1 6 0 3 1 1 0 3 1 311

Run-Length Encoding

Pixel value Number of repetitions

Input

Figure 2.22: Run-Length Encoding process.

Although the ease of implementation and execution has made RLE an attractive alter-

native to more complex compression algorithms, its efficiency is maximized when the data

consists of only two symbols in its bit pattern, with one symbol being more frequent than the

other. In this case, RLE encodes the input data set into two bytes: the first byte represents

the pixel intensity value, while the second byte indicates the number of consecutive pixels that

share the same intensity, as illustrated in Figure 2.22.



Chapter 3

Proposed Method

3.1 System Description

This dissertation proposes a CNN model partitioning and compression system for object

detection in videos, aimed at reducing the computational cost of the model. This makes it fea-

sible to embed these networks into devices with computational limitations. Additionally, the

work introduces a new compression methodology for activation maps by exploring their tempo-

ral correlation. This approach reduces the transmission rate needed to send data between parts

of the network allocated on different devices, without significantly affecting the final model’s

classification performance.
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Figure 3.1: Overview of the proposed system.

Figure 3.1 presents an overview of the proposed system. Initially, the original network
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model M , consisting of K + L − 1 layers, is quantized to 8-bit integers using the Pytorch

Quantization API and then partitioned into two sub-models: sub-model M1, which contains

layers 0 through K − 1, and sub-model M2, which contains layers K through K + L− 1. The

input video is divided into frames, which will serve as input to the network. Although network

models typically handle frame extraction automatically during training and inference, in this

work, the frames are manually extracted to provide more control over the data, as shown in Step

1 of Figure 3.1.

These frames are then used as input to the network model. Since the proposed compres-

sion method aims to explore the temporal correlation between the frames, and therefore the

temporal correlation between the feature maps, two frames at different time steps—one at time

t− 1 and the other at time t—are passed through the network, as shown in Step 2.

The K − 1 layer of the M1 sub-model generates the feature maps, which are the outputs

of the convolutional layers after the inference process, as shown in Step 3. These feature maps

are then used as input for the encoding block in Figure 3.2.
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Figure 3.2: Encoding block of the proposed system.

The first step of the encoding block consists of the quantization of the feature map that

will be used as the anchor, which is the feature map of the frame at time t − 1, as shown in

Step 1 of Figure 3.2. This early quantization is essential for the algorithm, as it allows the

prediction algorithm to perform motion estimation while accounting for the error introduced by

the quantization on the encoder side, making the algorithm more robust.

The quantization scheme employed is an uniform quantization represented by the equa-
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tion

Q(x, s, z) = round
(x
s
+ z

)
, (3.1)

where s represents the scale or step of the quantizer, z is the quantized representation of zero,

and x is the value being quantized. The quantization parameters s and z are determined using

the same approach adopted by the PyTorch Quantization API, which uses observers—modules

responsible for calculating the quantization parameters based on data statistics.

A simple approach is the MinMax observer, which ensures that the full range of the data

is represented. The parameters are calculated as follows:

xmin = min(X) (3.2)

and

xmax = max(X). (3.3)

If the quantization scheme is symmetric—a method in which quantization levels are

evenly distributed around zero, ensuring equal spacing for both positive and negative val-

ues—the parameters are calculated as follows:

s =
2 ·max (|xmin| , |xmax|)

Qmax −Qmin
(3.4)

and

z = 128, (3.5)

where Qmin and Qmax represent the respective minimum and maximum integers that can be

represented after quantization. If not otherwise specified, Qmin = −127 and Qmax = 128.

If the quantization scheme is affine—a method that applies a linear transformation (scal-

ing and shifting) to map continuous values to discrete quantized levels—the parameters are

calculated as follows:

s =
xmax − xmin

Qmax −Qmin
(3.6)

and

z = Qmin − round
(xmin

s

)
. (3.7)

Considering that the quantization parameters have already been calculated for 8-bit inte-

gers by the Pytorch Quantization API and that we want to find new parameters for the same data

but with a smaller bit width, we assume the parameters are denoted as s8b and z8b. Disregarding
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rounding and considering the default Qmin and Qmax values, we have:

x

s8b
− z8b = (

x

sNb
− zNb) · 2N−8 (3.8)

x

s8b
− z8b =

2N−8 · x
sNb

− 2N−8 · zNb. (3.9)

Through comparison:

s8b =
sNb

2N−8
(3.10)

and

z8b = zNb · 2N−8. (3.11)

Then:

sNb = s8b · 2N−8 (3.12)

and

zNb = z8b · 28−N . (3.13)

If we wish to keep z as an integer, we have the following equations:

sNb = s8b · 2N−8 (3.14)

and

zNb = round
(
z8b · 28−N

)
. (3.15)

Equations 3.14 and 3.15 are then used in the Step 4 of Figure 3.2 to determine the quan-

tized values of the feature map, following Equation 3.1. In Step 5, the inverse quantization is

performed using the following equation:

x̂ = (Q(x, s, z)− z) · s. (3.16)

The unquantized values of the anchor feature map, along with the values of the current

feature map (which we aim to predict), are used as inputs to the motion estimation block, as

illustrated in Step 6. The motion estimation employs the Three Step Search Algorithm, as

described in Section 2.3.1.1, to generate the MVs in Step 7. The MVs and the quantized anchor

feature map are then encoded using Huffman coding in Steps 8 and 9.

Unlike traditional prediction algorithms, this proposed method does not use the residual

feature map (the difference between the current feature map and the predicted feature map based

on the MVs). During algorithm evaluation, it was observed that the information in the residual

feature map could be discarded without affecting the final predicted feature map at the decoder.
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Thus, the proposed method reduces the amount of data transmitted by only sending the anchor

feature map and the MVs, as shown in Step 10 of Figure 3.2.

The bit sequence is transmitted and used as input to the decoding block illustrated in

Figure 3.3, where the bits are read and reconstructed, as shown in Step 11. The data is then

decoded using Huffman coding in Step 12. Next, the quantized anchor feature map is processed

through the inverse quantization block in Step 13. Finally, the decoded motion vectors and

anchor feature map are used as inputs to the motion compensation block, as illustrated in Step

15.
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Figure 3.3: Decoding block of the proposed system.

In the motion compensation process, the TSS Algorithm uses the MVs to determine where

each block in the current feature map should be retrieved from the anchor feature map. For

each block, the MV indicates the displacement from its original position, guiding the decoder

to copy the corresponding block from the anchor feature map. These blocks are then assembled

according to their positions in the current feature map, forming the predicted feature map.

These feature maps are then used as input of the remaining layers of the network model

as shown in Step 16 of Figure 3.1. The network than performs the inference and outputs the

frames with the bouding boxes and the class of the objects identifieds in the frames, as shown in

Step 17. The frames are then stacked to generate the final video output with the object detection

bouding boxes, illustrated in Step 18 of Figure 3.1.
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The proposed system described above predicts the current feature map at time t based on

the anchor feature map at time t− 1. This type of prediction is called unidirectional prediction

(or one-way prediction), where only the past data is necessary to make a prediction. In video

compression, a common approach is to use bi-directional prediction (or bidirectional predictive

coding), where the information at time t is predicted based on the information at times t − 1

and t+ 1.
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Figure 3.4: Encoding block of the proposed bi-directional prediction.

However, in the proposed system, a different form of bi-directional prediction is intro-

duced. Instead of using two feature maps at different times to predict a single feature map, we

use a single feature map to predict two other feature maps. Figure 3.4 illustrates the encoding

block of the proposed bi-directional prediction. The feature map at time t serves as the anchor

for the feature maps at times t − 1 and t + 1. The process is similar to that explained in Fig-

ure 3.2, where MVs are calculated for both feature maps, encoded using Huffman coding, and

then sent to the decoder.

Figure 3.5 illustrates the decoding block of the proposed bi-directional prediction, where

the process is similar to that described in Figure 3.3. The bi-directional prediction used in video

compression enables more accurate reconstruction of frames by leveraging information from

both temporal directions. However, the proposed bi-directional prediction allows for greater
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data reduction during transmission or storage, as the feature map matrices can be represented

as MVs, which are simpler to compress and lighter in storage space.
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Figure 3.5: Decoding block of the proposed bi-directional prediction.



Chapter 4

Experimentals and Results

4.1 Network Models

4.1.1 Faster R-CNN with ResNet-50 Backbone

Faster R-CNN is a two-stage object detection model. In the first stage, it identifies regions

in the image that are likely to contain objects using the Region Proposal Network (RPN). In

the second stage, it classifies these regions and refines their bounding boxes. ResNet-50, a

deep residual network with 50 layers, is widely used for feature extraction due to its strong

representation capabilities [29] [30]. Figure 4.1 illustrates the architecture of Faster R-CNN

with a ResNet-50 backbone.
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Figure 4.1: Architecture of the Faster R-CNN with ResNet-50 Backbone.
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The structure of the Faster R-CNN with a ResNet-50 backbone can be divided into four

main blocks:

• 1. Backbone (ResNet-50):

– Conv1: The initial 7 × 7 convolution with 64 filters, stride 2, and padding 3. Fol-

lowed by batch normalization and ReLU activation. This reduces the spatial dimen-

sions by half.

– MaxPool: A 3 × 3 max pooling layer with stride 2, further reducing the spatial

dimensions.

– Residual Block 1: 3 residual bottleneck blocks, each containing a 1× 1 convolution

(to reduce channels), a 3x3 convolution, and a final 1 × 1 convolution (to restore

channels). Each block has a skip connection to help with gradient flow.

– Residual Block 2: 4 residual bottleneck blocks. The first block down-samples the

feature map, and the subsequent blocks maintain the same dimensions.

– Residual Block 3: 6 residual bottleneck blocks, with the first block down-sampling.

– Residual Block 4: 3 residual bottleneck blocks, with the first block down-sampling.

The final output of Residual Block 4 is a high-level feature map (usually 7×7×2048

for a 224× 224 input).

– Output Feature Map: The output from Residual Block 4 (typically 7× 7× 2048) is

fed to the Region Proposal Network.

• 2. Region Proposal Network (RPN):

– 3× 3 Conv Layer: A convolutional layer with 512 filters to process the feature map

from the backbone.

– Anchor Generation: At each spatial location, the RPN generates anchor boxes with

different sizes and aspect ratios (e.g., 3 scales and 3 aspect ratios, resulting in 9

anchors per location).

– Objectness Score Head: A 1 × 1 convolution that outputs a binary score for each

anchor (object or background).

– Bounding Box Regression Head: A 1 × 1 convolution that outputs bounding box

adjustments (dx, dy, dw, dh) for each anchor.
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– Output: The RPN outputs a set of proposals (likely regions containing objects) with

coordinates and objectness scores.

• 3. RoI Pooling:

– Projects each proposal onto the feature map.

– Divides each proposal into a fixed grid (e.g., 7× 7) and applies max pooling within

each bin.

– Produces a fixed-size feature map (7× 7×C) for each proposal, which is passed to

the Head Network.

• 4. Head Network:

– Two Fully Connected Layers: Each RoI feature map is passed through two fully

connected layers to generate high-level features for classification and bounding box

regression.

– Classification Head: A softmax layer that outputs the probability distribution over

classes (including the background).

– Bounding Box Regression Head: A regression layer that refines the bounding box

coordinates for each proposal.

ResNet-50 offers several advantages, including high accuracy due to its deep structure,

which enables it to learn complex patterns and improve object detection accuracy. The use of

residual connections helps avoid the vanishing gradient problem, allowing the network to be

deeper and more accurate. Additionally, it provides good generalization for large objects, ef-

fectively handling complex backgrounds and large-scale objects through its multi-scale feature

representation.

Since the proposed method focuses on compressing the feature maps extracted, the par-

tition points of the network are located within the backbone. Each convolution and activation

pair generates a feature map that can be compressed using the proposed algorithm, resulting in

16 possible partition points within the backbone. However, for this analysis, only four partition

points were selected, as they effectively represent the different alternatives:

• layer-1-block-2: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 256.
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• layer-2-block-3: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 512.

• layer-3-block-5: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 1024.

• layer-4-block-2: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 2048.

4.1.2 Faster R-CNN with MobileNetV3 Backbone

Faster R-CNN with MobileNetV3 is a lightweight version of Faster R-CNN, optimized

for efficiency and speed. MobileNetV3 incorporates techniques such as depthwise separable

convolutions and inverted residual blocks, which significantly reduce computation while main-

taining reasonable accuracy. This version of Faster R-CNN is well-suited for real-time applica-

tions or for use in mobile and embedded systems [31]. Figure 4.2 illustrates the architecture of

Faster R-CNN with a MobileNetV3 backbone.
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Figure 4.2: Architecture of the Faster R-CNN with MobileNetV3 Backbone.

The structure of the Faster R-CNN with a MobileNetV3 backbone can be divided into

four main blocks:

• 1. Backbone (MobileNetV3 Large):

– Initial Convolution: A 3 × 3 convolution with 16 filters, stride 2, and padding 1,

followed by batch normalization and a hard-swish activation.
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– Each bottleneck block consists of an expansion layer (to increase channels), a depth-

wise convolution (to capture spatial features independently for each channel), and a

projection layer (to reduce the channels).

– Stage 1: First bottleneck block with 16 output channels and no expansion.

– Stage 2: Two bottleneck blocks with 24 output channels and an expansion factor of

4.

– Stage 3: Three bottleneck blocks with 40 output channels and an expansion factor

of 3.

– Stage 4: Four bottleneck blocks with 80 output channels and an expansion factor of

6.

– Stage 5: Two bottleneck blocks with 112 output channels and an expansion factor

of 6.

– Stage 6: Three bottleneck blocks with 160 output channels and an expansion factor

of 6.

– Conv Head: A final 1 × 1 convolution with 960 filters to produce the final feature

map.

– Output Feature Map: The final feature map output from MobileNetV3 Large is

typically 7× 7× 960.

• 2. Region Proposal Network (RPN):

– 3× 3 Conv Layer: A convolutional layer with 512 filters to process the feature map

from the backbone.

– Anchor Generation: At each spatial location, the RPN generates anchor boxes with

different sizes and aspect ratios (e.g., 3 scales and 3 aspect ratios, resulting in 9

anchors per location).

– Objectness Score Head: A 1 × 1 convolution that outputs a binary score for each

anchor (object or background).

– Bounding Box Regression Head: A 1 × 1 convolution that outputs bounding box

adjustments (dx, dy, dw, dh) for each anchor.

– Output: The RPN outputs a set of proposals (likely regions containing objects) with

coordinates and objectness scores.



38

• 3. RoI Pooling:

– Projects each proposal onto the feature map.

– Divides each proposal into a fixed grid (e.g., 7× 7) and applies max pooling within

each bin.

– Produces a fixed-size feature map (7× 7×C) for each proposal, which is passed to

the Head Network.

• 4. Head Network:

– Two Fully Connected Layers: Each RoI feature map is passed through two fully

connected layers to generate high-level features for classification and bounding box

regression.

– Classification Head: A softmax layer that outputs the probability distribution over

classes (including the background).

– Bounding Box Regression Head: A regression layer that refines the bounding box

coordinates for each proposal.

MobileNetV3’s lightweight architecture enhances the efficiency of this version of Faster

R-CNN, making it faster and more computationally efficient. Its lower latency enables real-time

capability, making it suitable for applications in mobile or embedded systems. Additionally, the

depthwise convolutions in MobileNetV3 effectively capture details of smaller objects, espe-

cially in lower-resolution inputs, providing good performance for detecting small objects.

Similar to the network model with a ResNet-50 backbone, each convolution and activation

pair in the MobileNetV3 backbone generates a feature map that can be compressed using the

proposed algorithm, resulting in 16 possible partition points within the backbone. However, for

this analysis, only seven partition points were selected:

• layer-1-block-1: This partition point is located at the end of Stage 1, where the feature

maps are the output of the last bottleneck block, with a depth of 16.

• layer-3-block-2: This partition point is located at the end of Stage 2, where the feature

maps are the output of the last bottleneck block, with a depth of 24.

• layer-6-block-3: This partition point is located at the end of Stage 3, where the feature

maps are the output of the last bottleneck block, with a depth of 40.
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• layer-10-block-2: This partition point is located at the end of Stage 4, where the feature

maps are the output of the last bottleneck block, with a depth of 80.

• layer-12-block-3: This partition point is located at the end of Stage 5, where the feature

maps are the output of the last bottleneck block, with a depth of 112.

• layer-15-block-3: This partition point is located at the end of Stage 6, where the feature

maps are the output of the last bottleneck block, with a depth of 160.

• layer-16-block-2: This partition point is located at the end of the backbone, where the

feature maps are the output of the last bottleneck block, with a depth of 960.

4.1.3 RetinaNet with ResNet-50 Backbone

RetinaNet is a single-stage object detection model. Unlike Faster R-CNN, it does not

rely on a region proposal network; instead, it predicts object classes and bounding boxes in

a single pass over the image. RetinaNet introduces Focal Loss, which emphasizes hard-to-

classify examples during training, making it effective for handling class imbalance in detection

tasks [32]. Figure 4.3 illustrates the architecture of RetinaNet with a ResNet-50 backbone.
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Figure 4.3: Architecture of the RetinaNet with ResNet-50 Backbone.
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The structure of the RetinaNet with a ResNet-50 backbone can be divided into three main

blocks:

• 1. Backbone (ResNet-50):

– Conv1: The initial 7 × 7 convolution with 64 filters, stride 2, and padding 3. Fol-

lowed by batch normalization and ReLU activation. This reduces the spatial dimen-

sions by half.

– MaxPool: A 3 × 3 max pooling layer with stride 2, further reducing the spatial

dimensions.

– Residual Block 1: 3 residual bottleneck blocks, each containing a 1× 1 convolution

(to reduce channels), a 3x3 convolution, and a final 1 × 1 convolution (to restore

channels). Each block has a skip connection to help with gradient flow.

– Residual Block 2: 4 residual bottleneck blocks. The first block down-samples the

feature map, and the subsequent blocks maintain the same dimensions.

– Residual Block 3: 6 residual bottleneck blocks, with the first block down-sampling.

– Residual Block 4: 3 residual bottleneck blocks, with the first block down-sampling.

The final output of Residual Block 4 is a high-level feature map (usually 7×7×2048

for a 224× 224 input).

– Output Feature Map: The output from Residual Block 4 (typically 7× 7× 2048) is

fed to the Region Proposal Network.

• 2. Feature Pyramid Network (FPN):

– The FPN takes feature maps from multiple levels in the backbone (Residual Blocks

2, 3 and 4 of ResNet-50) and combines them into a multi-scale feature pyramid.

– Each feature map from the backbone is passed through 1×1 and 3×3 convolutions

to create a pyramid of feature maps at different scales.

– This multi-scale pyramid allows RetinaNet to detect objects of varying sizes by

providing multiple spatial resolutions for feature extraction.

– Output Dimensions: The FPN outputs feature maps at various resolutions (e.g., 56×

56, 28× 28, 14× 14, etc.), all with the same depth (e.g., 256 channels).
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• 3. Subnets for Classification and Box Regression:

– Classification Subnet: The classification subnet applies a series of 3x3 convolutions

to each level of the feature pyramid to predict object classes at each spatial location.

A final sigmoid layer generates binary class scores for each anchor, which are pro-

cessed by Focal Loss. The output dimension consists of class scores for each anchor

box across all feature map levels.

– Box Regression Subnet: The box regression subnet applies a series of 3x3 convo-

lutions to each level of the feature pyramid to predict bounding box coordinates for

each anchor. The output dimension consists of bounding box coordinates (dx, dy,

dw, dh) for each anchor across all feature map levels.

RetinaNet offers several advantages, including the use of Focal Loss, which focuses on

hard examples, addresses class imbalance, and improves accuracy for rare objects. Its single-

stage detection architecture enables faster inference by removing the need for a separate RPN,

making it suitable for real-time applications. Additionally, the efficient multi-scale detection

provided by the FPN enables robust detection of objects at various scales, making RetinaNet

effective for detecting objects of varying sizes.

Since this model also uses ResNet-50 as the backbone, the partition points are the same

as those described for the Faster R-CNN with a ResNet-50 backbone:

• layer-1-block-2: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 256.

• layer-2-block-3: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 512.

• layer-3-block-5: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 1024.

• layer-4-block-2: This partition point is located at the end of Residual Block 1, where the

feature maps are the output of the last bottleneck block, with a depth of 2048.

4.1.4 Quantization of Models

Quantization in PyTorch is a model optimization technique designed to reduce the com-

putational and memory demands of neural networks by representing weights and activations



42

with lower precision, often 8-bit integers instead of the usual 32-bit floating points. This ap-

proach makes models more efficient for inference, particularly on edge devices and in real-time

applications where resources are limited [33].

PyTorch’s quantization API supports three main methods of quantization: Dynamic Quan-

tization, Static (Post-Training) Quantization, and Quantization-Aware Training (QAT). Each

method offers a different balance of accuracy, performance, and ease of implementation, allow-

ing developers to choose the one that best suits their model’s deployment needs.

4.1.4.1 Dynamic Quantization

Dynamic quantization is the simplest form of quantization in PyTorch and is particularly

well-suited for models with fully connected layers, LSTMs, and GRUs, where activation values

can vary significantly at runtime.

In this approach, weights are pre-quantized to 8-bit integers, which drastically reduces

model size and memory usage, while activations remain in their original 32-bit floating-point

format until runtime, where they are dynamically quantized on a per-batch basis based on their

current range. This dynamic quantization allows the model to adapt to changes in activation

ranges due to different inputs, making it more flexible than other quantization methods.

While dynamic quantization does not achieve the same level of latency reduction as other

methods, it is ideal for use cases that are memory-bound rather than compute-bound, such as

NLP tasks where models often need large embedding matrices. Since it doesn’t need calibration

data, it is also a convenient option for quick optimizations without additional data collection or

fine-tuning.

4.1.4.2 Static (Post-Training) Quantization

Static quantization, also known as post-training quantization, is a more robust quantiza-

tion method that targets both weights and activations, quantizing them to 8-bit integers. This

approach significantly reduces both the memory footprint and computational cost, as lower-

precision operations consume less power and allow for higher processing speeds.

To achieve accurate static quantization, a calibration step is required: a small but repre-

sentative dataset is passed through the model to gather statistics on the ranges of activations.

These ranges are then used to set the quantization parameters (scales and zero points) for each

layer, ensuring that the quantization captures the most informative parts of the data distribution.
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Static quantization can achieve substantial speedups and memory savings, especially on

convolutional networks, which are computation-heavy. This method is ideal for deployment on

devices like mobile phones or IoT devices where computational efficiency is paramount. While

calibration data is required for accurate activation range estimation, the model does not need to

be retrained, making static quantization efficient to implement once calibration data is available.

4.1.4.3 Quantization-Aware Training (QAT)

Quantization-Aware Training (QAT) is the most accurate form of quantization offered by

PyTorch. In QAT, the model is trained with simulated quantization effects, allowing it to adapt

to quantization noise during training.

This technique adds fake quantization operations to the forward pass, which apply quanti-

zation effects (like clamping and rounding) to weights and activations, while the backward pass

uses the full-precision weights to optimize gradients. This balance enables the model to learn

a robust representation that can tolerate quantization errors, reducing the loss of precision that

often occurs with lower-bit representations.

QAT is computationally intensive, as it requires training with quantization effects ap-

plied, and typically demands a larger dataset and extended training time. However, it achieves

the highest accuracy among quantized models, particularly valuable in mission-critical appli-

cations where accuracy cannot be sacrificed, such as medical imaging, autonomous driving,

and financial models. QAT is particularly beneficial for complex architectures like large CNNs

or transformers, where even slight improvements in quantization robustness can significantly

affect real-world performance.

4.1.4.4 Implementation

The PyTorch Quantization API offers two different approaches for building and execut-

ing models: FX Graph Mode and Eager Mode. FX (Function Transformations) Graph Mode is

a newer approach designed to facilitate advanced optimizations, transformations, and analysis

on PyTorch models. It converts a model’s operations into an intermediate representation (IR)

graph, making it easier to understand, modify, and optimize the model’s structure. Eager Mode,

on the other hand, is the default execution mode in PyTorch, where operations are executed

immediately as they are called. This mode emphasizes ease of use, dynamic behavior, and de-

bugging simplicity, allowing developers to interact with the model in a step-by-step, imperative
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fashion.

The existing quantized models and documentation available in the PyTorch API focus

mainly on simple network models for image classification, necessitating the custom implemen-

tation of quantized versions for the models described above. While using FX Graph Mode

is simpler—since PyTorch provides functions to perform quantization and dequantization on

weights and activations—it became evident during implementation that partitioning the model

at specific points was not possible with this approach.

Consequently, the models were quantized using Eager Mode, which introduced additional

complexity due to the lack of documentation support for more complex models. Each model

required redesigning to ensure quantization was applied to all layers within both the backbone

and the rest of the network. It was necessary to fuse all layers within each residual block to

align with the quantization functions. Additionally, some operations within the bottleneck and

the RPN needed to be replaced. The implementation of the quantized models is available on

GitLab.

4.2 Dataset and Correlation Analysis

The dataset used in this study was the UFPark dataset, as proposed in [34]. It comprises

video clips from a surveillance camera capturing footage throughout the day. The dataset in-

cludes samples taken during the morning, afternoon, and night, totaling 32.77 GB of data and

approximately 3.25 hours of footage. The video clips vary in length from 5 to 30 seconds, de-

pending on activity patterns in the parking lot. In this work, we used sample video clips with a

duration of 10 seconds at a rate of 30 frames per second, resulting in a total of 300 frames per

clip.

For the correlation analysis of the frames and the feature maps, we compared the im-

ages and observed metrics like the Structural Similarity Index (SSIM) and MSE, along with

visualizations such as a correlation heatmap and residual analysis.

SSIM is a perceptual metric that compares two images based on how humans perceive

visual structure. SSIM evaluates similarity by analyzing luminance, contrast, and structural

patterns in both images, giving a score between −1 and 1. A higher SSIM value (closer to 1)

indicates higher similarity and visual quality, making it particularly useful in applications like

compression and restoration, where preserving image details is important.

https://gitlab.lasse.ufpa.br/2020-split-compression/2023_split_compression/cnn-inference
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MSE metric quantifies the average squared difference between pixel values of two im-

ages. This metric reflects the absolute differences in pixel intensity, where a lower MSE value

indicates higher similarity. Although simple and effective, MSE does not account for perceptual

qualities, so even small differences in structure or texture may produce large MSE values, so it

is often used alongside perceptual metrics like SSIM for a more balanced analysis.

The residual analysis visually displays the absolute pixel-by-pixel difference between im-

ages, highlighting areas where they diverge most. This residual image uses intensity differences

to emphasize structural dissimilarities, aiding in identifying regions of change or variation.
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Figure 4.4: Comparison between frames at index t− 1 and t.

Figure 4.4 illustrates the comparison between the frame at index t − 1 and the frame at

index t. The obtained values of SSIM and MSE are 0.994 and 1.621, respectively, indicating

a high temporal correlation between the frames, as expected. Figure 4.5 illustrates the residual

between the frames, where the movement of the person is more visible.

Figure 4.5: Residual between frames.
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Figure 4.6: Comparison between feature maps at first partition point.

The core of the proposed method is the existence of temporal correlation between the fea-

ture maps, which assumes that the temporal correlation observed between the frames extends

to the feature maps within the layers of the neural network. Figure 4.6 illustrates the com-

parison between the feature maps extracted from the first partition point of the Faster R-CNN

with a ResNet-50 backbone (as described in Section 4.1.1), where the output dimensions are

200× 272× 256. The obtained values of SSIM and MSE are 0.995 and 1.622, respectively, in-

dicating a high temporal correlation between the feature maps. Figure 4.7 illustrates the residual

information.

Figure 4.7: Residual between feature maps at first partition point.

For the second partition point, Figure 4.8 illustrates the comparison between the feature

maps. At this point, the feature maps have dimensions of 100×136×512, with SSIM and MSE

values of 0.996 and 0.764, respectively. This also indicates a high temporal correlation between

the feature maps. Figure 4.9 illustrates the residual information.
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Figure 4.8: Comparison between feature maps at second partition point.

Figure 4.9: Residual between feature maps at second partition point.

For the third partition point, Figure 4.10 shows the comparison between the feature maps

(with dimensions of 50× 68× 1024), where the obtained SSIM and MSE values are 0.991 and

2.601. Despite the increase in MSE, these values still represent a high temporal correlation.

Figure 4.11 illustrates the residual information.
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Figure 4.10: Comparison between feature maps at third partition point.
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Figure 4.11: Residual between feature maps at third partition point.

Finally, for the last partition point, Figure 4.12 illustrates the comparison between the

feature maps (25 × 34 × 2048), with SSIM and MSE values of 0.985 and 3.481, respectively,

also indicating a high temporal correlation. Figure 4.13 illustrates the residual information. As

we can see, the residual at this partition point contains less information, making the proposed

algorithm more efficient, since we are not sending the residual.
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Figure 4.12: Comparison between feature maps at fourth partition point.



49

Figure 4.13: Residual between feature maps at fourth partition point.

4.3 Results

This section describes the experiments performed and the results obtained after applying

the proposed system to the different network architectures and the dataset described.

The network models were pre-trained on the COCO dataset [35] and quantized using

the Static (Post-Training) Quantization method (as described in Section 4.1.4.2), which allows

for quantizing both weights and activations without the need to retrain the model. For the

experiments, three samples of 10 seconds each were used, extracted from different times of the

day, as detailed in Section 4.2. Table 4.1 presents the possible combinations of experiments for

each video sample.

Sample Input

Network Model Sample 1 Sample 2 Sample 3

Faster R-CNN with ResNet-50 8 8 8

Faster R-CNN with MobileNetV3 14 14 14

RetinaNet with ResNet-50 8 8 8

Table 4.1: Total number of experiments for each video sample.

Since we are analyzing how the prediction of feature maps reduces the amount of data

to be transmitted and how it affects the network’s final inference, the values in the table rep-

resent the total number of experiments required to gather this information. To calculate this,
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we multiply the number of possible partition points by 2, representing the metrics for rate and

mAP.

mAP [36] [37] [38] is a key metric for evaluating the performance of object detection

models, especially when the model must predict both the location and class of objects within

an image. mAP is derived from Average Precision (AP), which measures the model’s accuracy

across different levels of recall, capturing its balance between precision and recall. Precision is

defined as the proportion of correctly identified objects out of all predictions, while recall is the

proportion of actual objects correctly identified. These metrics are calculated as follows:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(4.1)

and

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(4.2)

To compute AP, precision is evaluated at various recall levels, typically by plotting a

precision-recall curve and calculating the area under this curve. Mathematically, AP can be

expressed as the integral of precision P (r) over recall r from 0 to 1:

AP =

∫ 1

0

P (r) dr. (4.3)

In practice, AP is often approximated by averaging precision values at specific recall

thresholds. Once AP values are calculated for each class, mAP is obtained by averaging these

AP values across all N object classes:

mAP =
1

N

N∑
i=1

APi. (4.4)

The mAP metric can be reported at different Intersection over Union (IoU) thresholds,

commonly mAP@0.50 and mAP@0.75. IoU measures the overlap between the predicted bound-

ing box and the ground truth bounding box:

IoU =
Area of Overlap
Area of Union

. (4.5)

Evaluating mAP at multiple IoU thresholds provides a fuller picture of the model’s de-

tection quality, capturing both its ability to find objects (through mAP@0.50) and localize them

accurately (through mAP@0.75). This way, mAP ensures that the model is not only finding

objects but also placing bounding boxes precisely around them, which is crucial in applications

like autonomous driving, medical imaging, and surveillance.
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Each experiment shown in Table 4.1 results in a total of 250 GB of data to be stored and

analyzed, consisting of the feature maps at four different partition points and for each bit depth

(ranging from 4 to 8). Therefore, this section will focus on the results obtained from Sample 1

using Faster R-CNN with a ResNet-50 backbone, as these results are sufficient to support the

main conclusions and comparisons. Table 4.2 shows all parameters that can be modified and

the values set for this experiment.

Partition Point Block Size Number of bits Scale at 8 bits Zero points at 8 bits

layer-1-block-2 8x8 4 to 8 0.024894 41

layer-2-block-3 8x8 4 to 8 0.082080 30

layer-3-block-5 4x4 4 to 8 0.041199 35

layer-4-block-2 4x4 4 to 8 0.092679 38

Table 4.2: Parameter values for Sample 1 using Faster R-CNN with a ResNet-50 backbone.

Figure 4.14 illustrates the data rates at the first partition point. At the top of the graph, we

see the rate required to transmit the extracted feature maps without any compression scheme,

which leads to a rate of approximately 418 MBps, assuming 30 frames per second. Applying

uniform quantization to the feature maps (using parameters from the PyTorch API) results in a

2x compression ratio at 4 bits, with a rate of 208 MBps, as shown by curve 2 in the graph. The

same rate is achieved when using uniform quantization with ZVC, as shown in curve 3. For

uniform quantization with Huffman coding, we achieve a compression ratio of approximately

6x at 4 bits, with a rate of 73 MBps, as seen in curve 4.

The proposed unidirectional prediction method is illustrated in curves 5 and 6, where, at

4 bits in the quantizer, we reach a compression ratio of 4x, with a rate of 105 MBps for both

unidirectional TSS alone and unidirectional TSS with ZVC coding. The proposed bi-directional

prediction method is shown in curves 7 and 8, where, at 4 bits in the quantizer, we achieve a

6x compression ratio, with a rate of 70 MBps for both bi-directional TSS alone and with ZVC

coding. Curves 9 and 10 represent the proposed unidirectional TSS and bi-directional TSS with

Huffman coding, where, at 4 bits, we reach compression ratios of approximately 11x and 16x,

with rates of 37 MBps and 25 MBps, respectively.
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Figure 4.14: Data rate at the first partition point.

Curves 11 and 12 represent the method proposed in [39] for compressing feature maps,

achieving, at 4 bits in the quantizer, compression ratios of around 5x and 7x, with rates of 71

MBps and 56 MBps, respectively. Finally, the last curve shows the rate for transmitting raw

frames as JPEG, which is 13 MBps.

As shown, for the first partition point, the proposed method achieves a significant rate

reduction compared to the feature maps without any compression, demonstrating its efficiency

in handling the information contained within the feature maps. However, when compared to the

rate required for frame transmission, the proposed method does not achieve lower rates. This is

due to the high volume of information carried by the feature maps in the initial network layers,

which have dimensions of 200×272×256 representing a total of 13.926.400 values, compared

to the 3.686.400 values (1280× 960× 3) in a frame.

Figure 4.15 illustrates the mAP of the network when running inference with the proposed

prediction method. The dotted red line represents the mAP of the network without any compres-

sion, reaching a value of 96%. After applying Static (Post-Training) Quantization to quantize

the network to 8-bit integers, the mAP drops to 94%, as shown by the dotted blue line.
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Figure 4.15: mAP at the first partition point.

After applying the proposed method to the feature maps, with the quantizer bit depth

varying from 4 to 8 bits, the yellow and purple lines show the resulting mAP. It is important to

note that the network was quantized only to 8-bit integers, as supported by the PyTorch API.

Therefore, the feature maps were re-quantized to 8-bit integers by the PyTorch API before being

fed back into the network.

As shown by the yellow and purple lines, the obtained mAP varies by 1% to 2% compared

to the mAP of the quantized network. These variations are due to a random process in the

proposed method, which can add or remove information from the feature maps, potentially

increasing or decreasing the final model accuracy.

Figure 4.16 illustrates the data rates at the second partition point. The data rates follow a

similar pattern to those at the first partition point, with the rate required to transmit the extracted

feature maps without any compression at the top of the graph, approximately 208 MBps. Next,

we see uniform quantization alone and with ZVC coding, achieving compression ratios of 2x

and 4x, with rates of 104 MBps and 46 MBps, respectively.
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Figure 4.16: Data rate at the second partition point.

Curves 4 and 5 represent the proposed unidirectional and bi-directional methods without

additional coding, achieving compression ratios of 4x and 5x at 4 bits, with rates of approxi-

mately 52 MBps and 35 MBps, respectively. Curves 6, 10, and 11 show similar compression

ratios of approximately 8x, with rates around 28 MBps, 28 MBps, and 26 MBps, respectively.

The remaining curves represent the proposed prediction methods. Notably, bi-directional

prediction with Huffman coding achieves a compression ratio of 20x compared to uncompressed

feature maps, reducing the transmission rate from 13 MBps (for JPEG-compressed raw frames)

to 10 MBps. As we progress deeper into the network layers, the feature maps carry less infor-

mation, making the proposed method more efficient.

Figure 4.17 illustrates the mAP, where we observe a similar random variation. For quan-

tizer bit depths of 5, 6, 7, and 8, the mAP deviates by less than 1% compared to the quantized

network’s mAP. However, at a 4-bit quantizer, there is a notable accuracy drop of around 3%.

Depending on the application, this accuracy loss may lead to detection issues, although it did

not significantly impact the final results in the object detection experiments.
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Figure 4.17: mAP at the second partition point.

Figure 4.18 illustrates the data rates at the third partition point. The data rates follow a

similar pattern to those at the previous partition points. However, at this partition point, instead

of only one curve below the rate required for raw frames, we observe five curves. Here, the

proposed unidirectional and bi-directional methods with ZVC and Huffman coding achieve

rates lower than that required to transmit the raw frames as JPEG.

For unidirectional prediction with ZVC and Huffman coding, we observe compression

ratios of approximately 8x and 12x, respectively, compared to uncompressed feature maps. This

results in a rate reduction from 13 MBps to 12 MBps and 8.5 MBps, respectively, compared

to raw frames. Similarly, for bi-directional prediction with ZVC and Huffman coding, the

compression ratios are approximately 11x and 15x, respectively, compared to uncompressed

feature maps, and reducing the rate from 13 MBps to 9 MBps and 6.6 MBps, respectively,

compared to raw frames.

Figure 4.19 illustrates the mAP, where we also observe a similar random variation, with

around 2% variance in final accuracy. This variation did not significantly impact the results in

the object detection experiments.
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Figure 4.18: Data rate at the third partition point.
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Figure 4.19: mAP at the third partition point.
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Finally, Figure 4.20 illustrates the data rates at the last partition point. At the top of the

graph, we see the rate required to transmit the extracted feature maps without any compression,

which is approximately 52 MBps. Applying uniform quantization to the feature maps results

in a 2x compression ratio at 4 bits, with a rate of 26 MBps, as shown by curve 2 in the graph.

Curve 3 represents unidirectional prediction, achieving a compression ratio of 4x with a rate of

13 MBps.

Curves 4 and 5 represent uniform quantization with ZVC coding and bi-directional pre-

diction, with compression ratios of approximately 6x and 5x, respectively, and rates of 8 MBps

and 9 MBps.

For unidirectional prediction with ZVC and Huffman coding, we observe compression

ratios of approximately 10x and 12x, respectively, compared to uncompressed feature maps,

with rates of 5 MBps and 4.2 MBps. Compared to the raw frames, these achieve compression

ratios of approximately 2.5x and 3x. Similarly, for bi-directional prediction with ZVC and

Huffman coding, the compression ratios are approximately 13x and 15x, reducing the rate from

52 MBps to 4 MBps and 3.4 MBps, respectively, compared to uncompressed feature maps.

Relative to the raw frames, these methods achieve compression ratios of approximately 3.25x

and 3.8x, significantly reducing the amount of information to be transmitted.

Figure 4.21 illustrates the mAP, where we also observe similar random variation, with

around 1% variance in final accuracy, which did not significantly impact the results in the object

detection experiments.
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Figure 4.20: Data rate at the last partition point.
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Figure 4.21: mAP at the last partition point.



Chapter 5

Conclusion and Future Work

This dissertation proposed a system consisting of two main elements: the first is the imple-

mentation of a partitioning strategy for a neural network used in video-based object detection,

targeting applications that require such networks on devices with limited computational capac-

ity. To address these constraints, the network architecture is organized such that the initial layers

are allocated on the end device, while the remaining layers are processed on a cloud server. The

second element is a compression method that explores temporal correlation between feature

maps, significantly reducing the amount of information that needs to be stored and transmitted

between the end device and the server. This approach respects hardware limitations and the

transmission rate constraints of the communication channel.

In the initial chapters, a literature review was conducted on the main components of a

convolutional neural network, covering the input layer, convolutional and pooling layers, which

are responsible for feature extraction and dimensionality reduction from the input data, and

concluding with the fully connected layers, which are responsible for the final weight training of

the network for the inference process. Following this, some of the primary activation functions

used in conjunction with the network layers were introduced, aimed at increasing the model’s

expressive capacity and enabling the network to embody artificial intelligence. Additionally,

the main techniques for data compression were presented, exploring both spatial and temporal

redundancy in the information to be compressed.

The results obtained with the UFPark dataset and the Faster R-CNN with a ResNet-50

backbone model demonstrated that the proposed system exhibited minimal accuracy loss com-

pared to the accuracy of the quantized model across the four defined partitioning points. At

the first partitioning point, using 4 bits to represent the data, the system achieved a mAP of ap-
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proximately 95%, with a compression ratio of about 16x relative to uncompressed data. At the

second point, we observed the lowest mAP of 89.5%, with a compression ratio of 20x compared

to uncompressed data. At the third partitioning point, the system achieved a mAP of 92%, with

a compression ratio of approximately 15x compared to uncompressed data and about 2x com-

pared to sending the raw frames as JPEG. Finally, at the last partitioning point, a mAP of 93.5%

was achieved, with a compression ratio of approximately 15x compared to uncompressed data

and 3.8x compared to raw frames. Thus, the proposed model successfully meets the expected

results, minimally affecting the model’s accuracy while significantly reducing the amount of

data that needs to be stored and transmitted between the end device and the cloud server, and

adding a layer of security to the collected data.

For future work, the correlation between feature maps can be further explored, specifi-

cally the correlation between kernels, to concentrate the most relevant information in the initial

depth layers of the feature maps, thereby further reducing the amount of data to be stored. For

instance, in the initial layers where feature maps have dimensions of 200×272×256, it may be

possible to reduce the last dimension and focus relevant information in the initial layers. Addi-

tionally, extending this research to align more closely with federated learning [40] concepts is

of interest, allowing the proposed compression system to be validated in scenarios with multiple

clients.



Bibliography

[1] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving Deep Neural Networks,” in Ar-

tificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier, 2024,

pp. 269–287.

[2] W. Chen, X. Lin, J. Lee, A. Toskala, S. Sun, C. F. Chiasserini, and L. Liu, “5G-Advanced

Toward 6G: Past, Present, and Future,” IEEE Journal on Selected Areas in Communica-

tions, vol. 41, no. 6, pp. 1592–1619, 2023.

[3] B. Mishra, D. Garg, P. Narang, and V. Mishra, “Drone-Surveillance for Search and Rescue

in Natural Disaster,” Computer Communications, vol. 156, pp. 1–10, 2020.

[4] Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuccia, “Bottlefit: Learning

Compressed Representations in Deep Neural Networks for Effective and Efficient Split

Computing,” in 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile

and Multimedia Networks (WoWMoM). IEEE, 2022, pp. 337–346.

[5] Z. Shao, X. Chen, L. Du, L. Chen, Y. Du, W. Zhuang, H. Wei, C. Xie, and Z. Wang,

“Memory-Efficient CNN Accelerator Based on Interlayer Feature Map Compression,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 2, pp. 668–

681, 2021.

[6] C. Xie, Z. Shao, N. Zhao, Y. Du, and L. Du, “An Efficient CNN Inference Accelera-

tor Based on Intra- and Inter-Channel Feature Map Compression,” IEEE Transactions on

Circuits and Systems I: Regular Papers, 2023.

[7] H. Zhang, L. Liu, H. Zhou, L. Si, H. Sun, and N. Zheng, “FCHP: Exploring the Discrimi-

native Feature and Feature Correlation of Feature Maps for Hierarchical DNN Pruning and



62

Compression,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32,

no. 10, pp. 6807–6820, 2022.

[8] Z. Zhang, M. Wang, M. Ma, J. Li, and X. Fan, “MSFC: Deep Feature Compression in

Multi-Task Network,” in 2021 IEEE International Conference on Multimedia and Expo

(ICME). IEEE, 2021, pp. 1–6.

[9] K. J. Cios, “Deep Neural Networks—A Brief History,” in Advances in Data Analysis with

Computational Intelligence Methods. Springer, 2018, pp. 183–200.

[10] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller, “Explaining

Deep Neural Networks and Beyond: A Review of Methods and Applications,” Proceed-

ings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.

[11] A. A. M. Al-Saffar, H. Tao, and M. A. Talab, “Review of Deep Convolution Neural Net-

work in Image Classification,” in 2017 International Conference on Radar, Antenna, Mi-

crowave, Electronics, and Telecommunications (ICRAMET). IEEE, 2017, pp. 26–31.

[12] J. Wu, “Introduction to Convolutional Neural Networks,” National Key Lab for Novel

Software Technology. Nanjing University. China, vol. 5, no. 23, p. 495, 2017.

[13] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Net-

works: Analysis, Applications, and Prospects,” IEEE Transactions on Neural Networks

and Learning Systems, 2021.

[14] H. S. Das and P. Roy, “A Deep Dive Into Deep Learning Techniques for Solving Spoken

Language Identification Problems,” in Intelligent Speech Signal Processing. Elsevier,

2019, pp. 81–100.

[15] Y. Wang, Y. Li, Y. Song, and X. Rong, “The Influence of the Activation Function in a

Convolution Neural Network Model of Facial Expression Recognition,” Applied Sciences,

vol. 10, no. 5, p. 1897, 2020.

[16] K. Sayood, Introduction to Data Compression. Morgan Kaufmann, 2017.

[17] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Springer

Science & Business Media, 2012, vol. 159.



63

[18] H. K. Joy, M. R. Kounte, A. Chandrasekhar, and M. Paul, “Deep Learning Based Video

Compression Techniques with Future Research Issues,” Wireless Personal Communica-

tions, vol. 131, no. 4, pp. 2599–2625, 2023.

[19] S. Pandit, P. K. Shukla, A. Tiwari, P. K. Shukla, M. Maheshwari, and R. Dubey, “Re-

view of Video Compression Techniques Based on Fractal Transform Function and Swarm

Intelligence,” International Journal of Modern Physics B, vol. 34, no. 08, p. 2050061,

2020.

[20] B. Furht, J. Greenberg, and R. Westwater, Motion Estimation Algorithms for Video Com-

pression. Springer Science & Business Media, 2012, vol. 379.

[21] A. Barjatya, “Block Matching Algorithms for Motion Estimation,” IEEE Transactions

Evolution Computation, vol. 8, no. 3, pp. 225–239, 2004.

[22] S. Kulkarni, D. Bormane, and S. Nalbalwar, “Coding of Video Sequences Using Three

Step Search Algorithm,” Procedia Computer Science, vol. 49, pp. 42–49, 2015.

[23] R. Srinivasan and K. Rao, “Predictive Coding Based on Efficient Motion Estimation,”

IEEE Transactions on Communications, vol. 33, no. 8, pp. 888–896, 1985.

[24] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, “Survey on Block

Matching Motion Estimation Algorithms and Architectures with New Results,” Journal

of VLSI signal processing systems for signal, image and video technology, vol. 42, pp.

297–320, 2006.

[25] C.-F. Tseng, Y.-T. Lai, and M.-J. Lee, “A VLSI Architecture for Three-Step Search with

Variable Block Size Motion Vector,” in The 1st IEEE Global Conference on Consumer

Electronics 2012. IEEE, 2012, pp. 628–631.

[26] M. Sharma et al., “Compression Using Huffman Coding,” IJCSNS International Journal

of Computer Science and Network Security, vol. 10, no. 5, pp. 133–141, 2010.

[27] M. K. Mathur, S. Loonker, and D. Saxena, “Lossless Huffman Coding Technique for

Image Compression and Reconstruction Using Binary Trees,” International Journal of

Computer Technology and Applications, vol. 3, no. 1, 2012.



64

[28] S. Akhter and M. Haque, “ECG Compression Using Run Length Encoding,” in 2010 18th

European Signal Processing Conference. IEEE, 2010, pp. 1645–1649.

[29] B. W. Choi, S. Kang, H. W. Kim, O. D. Kwon, H. D. Vu, and S. W. Youn, “Faster Region-

Based Convolutional Neural Network in the Classification of Different Parkinsonism Pat-

terns of the Striatum on Maximum Intensity Projection Images of [18F] FP-CIT Positron

Emission Tomography,” Diagnostics, vol. 11, no. 9, p. 1557, 2021.

[30] Q.-Q. Zhou, J. Wang, W. Tang, Z.-C. Hu, Z.-Y. Xia, X.-S. Li, R. Zhang, X. Yin, B. Zhang,

and H. Zhang, “Automatic Detection and Classification of Rib Fractures on Thoracic CT

Using Convolutional Neural Network: Accuracy and Feasibility,” Korean Journal of Ra-

diology, vol. 21, no. 7, p. 869, 2020.

[31] M. Abd Elaziz, A. Dahou, N. A. Alsaleh, A. H. Elsheikh, A. I. Saba, and M. Ahmadein,

“Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer

Algorithm,” Entropy, vol. 23, no. 11, p. 1383, 2021.

[32] H. Tian, Y. Zheng, and Z. Jin, “Improved RetinaNet Model for the Application of Small

Target Detection in the Aerial Images,” in IOP Conference Series: Earth and Environmen-

tal Science, vol. 585, no. 1. IOP Publishing, 2020, p. 012142.

[33] Pytorch, “Pytorch Quantization: https://pytorch.org/docs/stable/quantization.html.”

[34] I. Nascimento, P. Castro, S. Klautau, L. Gonçalves, F. Brito, A. Klautau, S. Lins et al.,

“Public Dataset of Parking Lot Videos for Computational Vision Applied to Surveil-

lance,” in 2020 19th IEEE International Conference on Machine Learning and Appli-

cations (ICMLA). IEEE, 2020, pp. 61–64.

[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-

nick, “Microsoft COCO: Common Objects in Context,” in Computer Vision–ECCV 2014:

13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part

V 13. Springer, 2014, pp. 740–755.

[36] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The PAS-

CAL Visual Object Classes (VOC) Challenge,” International Journal of Computer Vision,

vol. 88, pp. 303–338, 2010.



65

[37] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,

“The PASCAL Visual Object Classes Challenge: A Retrospective,” International Journal

of Computer Vision, vol. 111, pp. 98–136, 2015.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein et al., “ImageNet Large Scale Visual Recognition Challenge,”

International Journal of Computer Vision, vol. 115, pp. 211–252, 2015.

[39] R. D. Evans, L. Liu, and T. M. Aamodt, “JPEG-ACT: Accelerating Deep Learning Via

Transform-Based Lossy Compression,” in 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 860–873.

[40] J. Wen, Z. Zhang, Y. Lan, Z. Cui, J. Cai, and W. Zhang, “A Survey on Federated Learning:

Challenges and Applications,” International Journal of Machine Learning and Cybernet-

ics, vol. 14, no. 2, pp. 513–535, 2023.




	Acknowledgment
	Glossary
	List of Figures
	List of Tables
	Contents
	Abstract
	Resumo
	Introduction
	Contributions

	Theoretical Foundations
	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Activation Functions

	Quantization
	Motion Estimation
	Block Matching Algorithms

	Huffman Coding
	Run-Length Encoding

	Proposed Method
	System Description

	Experimentals and Results
	Network Models
	Faster R-CNN with ResNet-50 Backbone
	Faster R-CNN with MobileNetV3 Backbone
	RetinaNet with ResNet-50 Backbone
	Quantization of Models

	Dataset and Correlation Analysis
	Results

	Conclusion and Future Work
	Bibliography

